模式识别与人工智能
2025年4月4日 星期五   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2016, Vol. 29 Issue (1): 1-10    DOI: 10.16451/j.cnki.issn1003-6059.201601001
论文与报告 最新目录| 下期目录| 过刊浏览| 高级检索 |
一种改进的非局部均值去噪算法*
蔡斌1,2,刘卫2,郑重2,汪增福1,2
1.中国科学技术大学 自动化系 合肥 230027
2.中国科学院合肥智能机械研究所 核环境遥操纵机器人研究室 合肥 230031
An Improved Non-local Means Denoising Algorithm
CAI Bin1,2, LIU Wei2, ZHENG Zhong2, WANG Zengfu1,2
1.Department of Automation, University of Science and Technology of China, Hefei 230027
2.Laboratory of Nuclear Environment Telerobot, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031

全文: PDF (1362 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对非局部均值去噪算法在图像块相似度计算方面存在的不足,提出计入图像旋转对相似度贡献的、效果更好的图像块匹配算法.为了获得与给定像素点邻域相似的图像子块,首先对给定像素点周边的相关邻域子块按灰度值大小排序,计算其与同样按灰度值大小排序的给定像素点邻域子块之间的距离,据此筛选出灰度分布相似的图像子块作为候选集,更进一步在候选集中选出结构上更为相似的图像子块.同时为了克服噪声影响,在计算子块相似度之前对输入图像进行预滤波处理.实验表明,与原始的非局部均值去噪算法相比,文中算法在峰值信噪比、平均结构相似性及主观视觉效果等方面均具有一定优势,特别是在噪声较大时,文中算法的去噪效果更好.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡斌
刘卫
郑重
汪增福
关键词 非局部均值 相似性度量 去噪    
Abstract:Aiming at the problem of similarity calculation for image block in non-local means (NLM) denoising algorithm, a more accurate block matching algorithm is proposed. In this algorithm, the contribution of rotation is taken into alcount. To obtain the blocks similar to the neighborhood of the given pixel, the related blocks surrounding the given pixel are reordered according to their gray values, and then the pixels in the neighborhood of the given pixel are also reordered in the same way. Finally, the distance between the related blocks and the neighborhood of the given pixel are calculated according to the reordered gray values. The candidate blocks with small distance are selected. Furthermore, the more structurally similar blocks are selected from the candidate blocks. To eliminate the effect of noise, the inputted image is processed by a pre-filtering operation before similarity calculation. Simulation experiments show that compared with the original NLM denoising algorithm, the proposed algorithm has better performances in peak signal-to-noise ratio (PSNR), mean structural similarity (MSSIM) and subjective visual effect. Especially, the proposed algorithm has better denoising performance for the images with lots of noise variance.
Key wordsNon-local Means    Similarity Measurement    Denoising   
收稿日期: 2014-11-26     
ZTFLH: TN 911.73  
基金资助:国家自然科学基金项目(No.61472393)、国际热核聚变实验堆(ITER)计划专项(No.2012GB102007)资助
作者简介: 蔡 斌,男,1990年生,硕士研究生,主要研究方向为图像去噪、三维重建.E-mail:bincai@mail.ustc.edu.cn.刘 卫,男,1987年生,硕士,助理研究员,主要研究方向为图像去噪、图像融合.E-mail:lw_feixi@163.com郑 重,男,1981年生,博士,副研究员,主要研究方向为模式识别、智能机器人.E-mail:zzheng@mail.ustc.edu.cn.汪增福(通讯作者),男,1960年生,博士,教授,主要研究方向为计算机视觉、计算机听觉、模式识别、智能机器人.E-mail:zfwang@ustc.edu.cn.(WANG Zengfu
引用本文:   
蔡斌,刘卫,郑重,汪增福. 一种改进的非局部均值去噪算法*[J]. 模式识别与人工智能, 2016, 29(1): 1-10. CAI Bin, LIU Wei, ZHENG Zhong, WANG Zengfu. An Improved Non-local Means Denoising Algorithm. , 2016, 29(1): 1-10.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201601001      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2016/V29/I1/1
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn